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A B S T R A C T

We document the impact of India’s COVID-19 lockdown on the food supply chain. Food arrivals in wholesale
markets dropped by 69% in the three weeks following the lockdown and wholesale prices rose by 8%. Six
weeks after the lockdown began, volumes and prices had fully recovered. The initial food supply shock was
highly correlated with early incidence of COVID-19. We provide evidence that this correlation is due more to
state-level lockdown policy variation than local responses of those in the food supply chain. Finally, during
the recovery phase, the correlation between the food supply disruption and COVID-19 exposure disappeared,
suggesting uniform recovery.
1. Introduction

Since the COVID-19 pandemic began, one concern has been that
lockdowns might be especially damaging in the poorest countries – in
these places lockdowns may reduce the spread of coronavirus, but only
by simultaneously leaving poor families without cash to spend, and
without food to eat. In this paper, we shed light on a particular aspect
of this concern: can food supply chains remain functional in the face of
a national lockdown, and a growing burden of coronavirus cases? We
address this question by documenting the breakdown and subsequent
recovery of India’s food supply chain during the first three months of
India’s national lockdown.

On March 24, 2020, India announced a strict lockdown for 21 days
in response to a surge in COVID-19 cases. According to the World
Bank, India’s lockdown was the largest implemented by any country
(Karaban and Mozumder, 2020).3 The lockdown was extended in three
additional phases of 14 days each, with each phase accompanied by
relaxations in lockdown rules. Following these three additional phases,
the central government announced a staggered lifting of the lockdown.
Using web-scraped daily data on wholesale volumes and prices for 271
food varieties traded at 1804 agricultural markets in 24 states of India,
we document trends in the supply and prices of food during these
phases. Specifically, we estimate the size of the initial shock to food
supply and wholesale prices following the lockdown announcement,
the extent of the recovery, and the correlation of the shock and the
recovery with the spread of the virus.
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We describe four findings. First, food arrivals in wholesale markets
dropped by 69% in the three weeks following the lockdown, but
subsequently recovered, reaching similar levels to those in 2019 by
early-May. Second, we estimate dynamic effects of the lockdown on
wholesale prices that are similar to the effects on volumes. In particular,
while wholesale prices initially increased by 8%, they quickly returned
to a downward trend. Third, the initial state-level food supply shock
was highly correlated with exposure to COVID-19 – states with more
COVID-19 suffered larger drops to food arrivals after the lockdown
relative to previous years – but this correlation disappeared during
the recovery phase, suggesting that food supply volumes recovered
irrespective of the incidence of the virus spread. Fourth and finally, we
use within-state variation to unpack the correlation between COVID-19
exposure and the initial supply shock. We find evidence that the cor-
relation is driven by state-level policies, rather than local responses of
those in the food supply chain. In particular, districts more exposed to
COVID-19 did not have larger food supply disruptions than less-exposed
districts belonging to the same state. In addition, using state-level
declines in mobility as a proxy for policy responses to the pandemic, we
demonstrate a strong positive relationship between state-level declines
in mobility and the severity of the food supply shock.

This study contributes to the growing literature on the impact of the
COVID-19 shock on the food sector in the developing world (Abay et al.,
2020; Adjognon et al., 2020; Aggarwal et al., 2020; Ceballos et al.,
2020; Kansiime et al., 2021; Mahmud and Riley, 2021; Hirvonen et al.,
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2021). Closest to this paper are the contemporaneous studies of Rawal
and Verma (2020) and Varshney et al. (2020). These studies use the
same principal data source to study the evolution of food volumes and
prices in India during the lockdown. We complement their analyzes by
extending the sample to cover more food varieties, and more states.
This allows us to explore richer patterns between COVID-19 exposure
and the health of the food supply chain. In particular, by exploiting
both within-state and between-state variation in COVID-19 incidence
we attribute the food supply shock largely to state-level policies rather
than the voluntary behavioral response of market participants. We also
demonstrate that the impacts on the food supply chain are similar
in urban versus rural districts, and establish a relationship between
state-level mobility patterns and the food supply shock.

Other work in India finds that prices in urban food markets rose 3%
in the 28 days post-lockdown (Narayanan and Saha, 2021), that supply
to a major online retailer fell by 10% (Mahajan and Tomar, 2021), and
more generally, reports on the food security risks faced in India as a
result of COVID-19 (Ceballos et al., 2020; Reardon et al., 2020; Ray and
Subramanian, 2020; Kesar et al., 2021). Outside of food supply chain
concerns, Jain and Dupas (2020) document the impact of the lockdown
on India’s non-COVID-19 health outcomes and Ravindran and Shah
(2020) examine the impact of the Indian lockdown on rates of domestic
abuse. More broadly, our work connects to the literature examining
the consequences of policy responses to COVID-19 in the developing
world (see e.g. Banerjee et al., 2020a and Ajzenman et al., 2021 on
the impacts of public health messaging, and Banerjee et al., 2020b
and Londoño-Vélez and Querubin, 2020 on the impacts of emergency
cash assistance).

Our work also connects to the more general global debate on
whether economic responses to COVID-19 are more policy-driven or
more related to voluntary individual responses. This debate informs
central questions: does lifting a lockdown cause economic activity to
increase? Or will people stay at home regardless of the official lock-
down policy in the hope of mitigating personal and social risks? Coibion
et al. (2020) estimate that lockdowns account for close to 60% of the
decline in the employment to population ratio in the US. Our results
suggest that the shock to food supply in India was driven more by
lockdown policies, which varied in stringency across states, than by
local responses to COVID-19 risk, which also varied dramatically within
each state.

The rest of this paper is organized as follows. In the next section,
we give an overview of the COVID-19 situation in India, the policy re-
sponse of both the central and state governments, and the labor supply
response of individuals. Thereafter, we describe our data sources. We
then present our four empirical findings. Finally, we give concluding
observations.

2. Background and data

2.1. COVID-19 in India

The COVID-19 virus spread rapidly across the globe in the early
months of 2020, forcing the World Health Organization to declare it
a pandemic by early-March. India reported its first case on January
30, 2020, though the initial spread remained contained, with only
500 cases reported by March 23.4 Despite the low reported caseload,
ndia responded to the rapid global spread of the virus by announcing

nationwide lockdown on March 24. In an effort to preserve the
unctioning of the food supply chain, most of the agricultural sector and
ood markets were exempted from the lockdown. Nevertheless, frictions
n inter-state travel and labor shortages posed significant obstacles for
he food supply chain.

4 See https://coronavirus.jhu.edu/map.html.
2

s

As the virus began to spread rapidly within the country, the lock-
down was extended on April 14 until May 3. The intensity of the
lockdown was, however, eased partially. Areas with large COVID-19
outbreaks were designated as hotspots, and within hotspots, contain-
ment zones were demarcated where the intensity of virus spread was
the highest. Strict lockdowns were implemented in hotspots while non-
hotspot areas were allowed to open up necessary activities from April
20. The lockdown was further extended by two-week periods beginning
May 3 and May 17, along with more relaxations in non-hotspot areas.
Apart from the containment zones, the government started opening up
the country from June 1. The virus, however, continued to spread,
and by June 30 India had the fourth highest number of positive cases
reported (over 585,000) with over 17,000 deaths.5 In terms of cases
per capita, however, India had a relatively low rate of confirmed cases,
with 0.4 per one thousand population as compared with 7.8 per one
thousand in the US (the country with the highest number of confirmed
cases as of June 30).6

The distribution of confirmed cases was very uneven, with more
than half of the confirmed cases reported in six major cities: Mum-
bai, Delhi, Ahmedabad, Chennai, Pune, and Kolkata. As a result, the
response of state-level governments to COVID-19 has varied, with some
states, e.g. Punjab and Telangana, extending the lockdown until June
30th, and many beginning their lockdown several days prior to the
national lockdown. State-level policies varied on other dimensions as
well. For instance, in Delhi, mandis (local agricultural markets) were re-
stricted to operate at half capacity, with vendors operating on alternate
days (Press Trust of India, 2020). The government of Tamil Nadu placed
restrictions on the timings at which trucks could unload deliveries
in mandis (The New Indian Express, 2020). And the government of
Maharashtra enforced mandi closures in response to pandemic surges
(Srivastava, 2020).7

One of the major responses to the government measures was a
large exodus of migrant laborers from urban centers to rural areas.
40% of India-born men in urban India live in a place different to
their birthplace (versus 14% in rural India, Census 2011). Because
opportunities to work were scarce, many migrant laborers returned to
their locations of origin at the onset of the lockdown. Estimates place
this exodus at about 6.7 million people by June 2020 across just the six
states of Bihar, Uttar Pradesh, Rajasthan, Madhya Pradesh, Odisha, and
Jharkhand (Mathew, 2020), and 11.4 million people by February 2021
across all states.8 This reduced available labor for the food supply chain,
often leaving wholesale markets and traders with insufficient workers,
especially in the initial days of the lockdown.9 Since most of the supply
chain in India is informal and labor intensive, the repercussions of such
a labor shortage can be substantial. Our analysis of the food supply
chain is set in this background.

2.2. Data

Our main source of data is the online database set up by the central
government’s Ministry of Agriculture. As part of an initiative to enhance

5 https://www.mohfw.gov.in/# accessed on August 30, 2020.
6 https://ourworldindata.org/grapher/total-confirmed-cases-of-covid-

9-per-million-people?time=2020-01-30..&country=$\protect$\relax\
vsim$$IND accessed on August 31, 2020.

7 For a more thorough discussion of state-level policy variation, see
arayanan and Saha (2020).
8 This data was provided by Shri. Santhosh Kumar Gangwar, Minister of

tate for Labor and Employment in Indian parliament on February 8, 2021 as
n answer to Lok Sabha unstarred question No. 1056.

9 In principle, laborers who returned to their native villages could supply
abor in their nearby mandis, reducing the labor supply shock to rural mandis.
ut frictions due to the lockdown may have made it difficult to establish
elationships in new markets. Indeed, in Section 3.1 we find that the food
upply shock was similarly severe in rural and urban districts.

https://coronavirus.jhu.edu/map.html
https://www.mohfw.gov.in/#
https://ourworldindata.org/grapher/total-confirmed-cases-of-covid-19-per-million-people?time=2020-01-30..&country=~IND
https://ourworldindata.org/grapher/total-confirmed-cases-of-covid-19-per-million-people?time=2020-01-30..&country=~IND
https://ourworldindata.org/grapher/total-confirmed-cases-of-covid-19-per-million-people?time=2020-01-30..&country=~IND
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transparency and improve price discovery, the Ministry of Agriculture
created a network of mandis by connecting them through an integrated
scheme for agricultural marketing. The volume of arrivals of each
food variety, along with price information (maximum, minimum, and
modal traded price), is reported by each mandi to the Agricultural
Marketing Network which is consolidated and uploaded to its portal,
agmarknet.gov.in, on a daily basis. The data covers 307 varieties
(e.g. coconut, beans, tomato), with each variety belonging to one of
15 broad categories.10

Our initial dataset includes all varieties reported to the Agmarknet
ortal during January 1 to June 30 of 2018, 2019, and 2020. To enable
ggregation of volumes across varieties, we include only those products
hat are measured in tonnes, meaning we exclude those measured in
umbers. While all 15 broad categories remain represented, this sample
estriction excludes 31 of the 307 varieties. Nevertheless, these 31
arieties constitute only 4.1% of the total number of mandi-variety-
ay-level observations. For our analysis of wholesale prices we use
he modal price, which better reflects the general price level than the
inimum or maximum price.

Though 2905 markets have reported products measured in tonnes
o Agmarknet at some point during January to June of 2018 to 2020,
he number of markets reporting at any one time has varied year-to-
ear (Figure A1). To get closer to a balanced panel, we restrict our
ample only to those mandis that reported arrivals in tonnes at least
nce during the month of March 2020. This sample restriction leads
s to drop a handful of large states, including Bihar and Maharashtra
Table A1). Our final dataset consists of 271 varieties traded at 1804
arkets in 24 states of India.

Despite our sample restrictions, our geographic coverage is repre-
entative of India as a whole. Districts with mandis ever reporting data
o the Agmarknet portal are remarkably similar on average observables
o Indian districts overall (columns 2 and 3, Table A2) – most notably,
he 640 Indian districts have a rural share of households of 73% on av-
rage, and so do the 508 districts represented by mandis on Agmarknet.
ore importantly, the 391 districts represented by our 1804 analysis

ample mandis are also similar. Only two exceptions stand out. First,
ur analysis sample districts are on average slightly more populous
han Indian districts overall (2.1 versus 1.9 million people). Second,
ur analysis sample districts have a lower share of Scheduled Tribes
13 versus 18%). Given that even these two differences are small, our
esults likely generalize to agricultural markets nationwide.

Importantly, we note that a key limitation of our dataset is that
t does not capture food that is traded outside of the mandi supply
hain network (e.g. through the direct selling of produce by farmers to
ustomers). Nevertheless, a significant fraction of India’s food supply
ppears to be traded at the 1804 markets that comprise our analysis
ample. For the 18 varieties (among cereals, oil seeds, and commercial
rops) for which we have compiled production data, our analysis
ample markets covered an average of 25% of nationwide production
uring 2019/20 (Figure A2). Furthermore, this number is a lower
ound on sales coverage, given that not all production is marketed –
or example, the marketed surplus ratio (the ratio of marketed output
o total output) was 74% for wheat and 84% for rice in 2014/15, the
ost recent year with data available (Government of India 2019). An

verall marketable surplus of 80% would suggest that our mandis cover
1% of India’s agricultural sales.

To link supply shocks with variation in COVID-19 exposure, we use
ata from api.covid19india.org on the number of confirmed cases of
oronavirus at the state- and district-level as of April 14, 2020 (the end
f Phase 1 of the lockdown) and as of June 30, 2020 (the end of Phase

10 The categories are: Cereals, Spices, Fiber Crops, Oil Seeds, Fruits, Pulses,
orest Products, Other, Vegetables, Dry Fruits, Drug and Narcotics, Oils and
ats, Live Stock and Poultry and Fisheries, Beverages, and Flowers. Except
here explicitly mentioned, all groups are included in our analysis.
3

Fig. 1. The lockdown caused wholesale volumes to plummet. Notes: The y-axis variable
is a seven-day moving average of aggregate tonnes of food arrivals to the 1804 mandis
that reported arrivals in tonnes to Agmarknet at least once in March 2020. The data
covers January 1 to June 30, 2018 to 2020. Given that the variable is a seven-day
moving average, the first data point shown is January 7 (the average arrivals for
January 1 to 7).
Source: agmarknet.gov.in.

5). covid19india.org aggregates COVID-19 numbers in real-time across
state bulletins, official handles (e.g. Chief Ministers, Health Ministers)
and press reports, and uses a team of volunteers to validate the data.
We note that confirmed cases differ from the true case count given
underreporting and insufficient testing.11 Nevertheless the relationship
between confirmed cases and the health of the food supply chain is
informative given that confirmed cases are likely an important input
into policy decisions. We return to this point in Section 3.3.

Finally, to link supply shocks with declines in mobility we use
Google mobility data.12 Google infers mobility from users of its appli-
ations who allow it to track their location. The data reports aggregate
obility patterns without revealing the travel data of individual users.

. The lockdown and the response of India’s food supply Chain

.1. Food arrivals fell immediately but subsequently recovered

Among the sample of mandis that reported at least once in March
020, aggregate food arrivals were similar prior to March 24 in 2018
nd 2019 as compared with 2020 (Fig. 1).13,14 Following the lockdown
n March 24, 2020, arrivals dropped dramatically as compared with
evels in 2018 and 2019, and gradually recovered from Phase 2 of the
ockdown onwards. This core pattern is similar for each of six major
ood groups (Figure A5), suggesting that the recovery was not driven
y product-specific government procurement.

11 Related, Anand et al. (2021) estimates that the true number of deaths from
COVID-19 in India exceeds the confirmed deaths by an order of magnitude.

12 From https://www.google.com/covid19/mobility/
13 Wheat accounts for 30.7% of total food volume in our data, and exhibits

considerable volatility from year to year (see Figure A3). To confirm that
wheat does not drive our results, we replicate all the main tables and figures
involving total food volumes in Appendix B, excluding wheat. None of our core
results are affected by the exclusion of wheat. We do not replicate our analysis
of price trends without wheat, as these analyses are at the product-day level,
so wheat does not have an outsized influence.

14 We plot the seven-day moving average to smooth weekly fluctuations in
arrivals, given notable dips on Sundays (Figure A4).

http://agmarknet.gov.in
http://api.covid19india.org
http://agmarknet.gov.in
http://covid19india.org
https://www.google.com/covid19/mobility/
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To quantify the aggregate patterns in Fig. 1 we use variants of the
following difference-in-difference specification:

𝑙𝑛 (Volume)𝑦𝑑 = 𝛼𝑦 + 𝛼𝑑 +
5
∑

𝑡=1
𝛽𝑡Phase𝑡𝑦𝑑 + 𝜖𝑦𝑑 (1)

here 𝑙𝑛 (Volume)𝑦𝑑 is the log of the total volume of food arrivals in
onnes on calendar date 𝑑 (e.g. January 1) during year 𝑦 (either 2019 or
020). 𝛼𝑦 and 𝛼𝑑 are year and calendar date fixed effects, respectively,
aking this a difference-in-difference design where we are comparing

he volume change before and after the lockdown began in 2020 with
he volume change before and after March 24 in 2019.15 We include
nly data from March 1 to June 30 in these regressions, making the

‘before’’ period March 1 to 24. To estimate separate effects for each
hase of the lockdown, we include a set of dummy variables for the five
hases. Phase1𝑦𝑑 is a dummy variable equal to one for the period March
5, 2020 to April 14, 2020, and equal to zero otherwise. The remaining
ummies are switched on for April 15 to May 3 (Phase2𝑦𝑑), May 4 to
ay 17 (Phase3𝑦𝑑), May 18 to May 31 (Phase4𝑦𝑑), and June 1 to June 30

Phase5𝑦𝑑), with all of these dates in 2020 only. For specifications at the
ay-level, we use robust standard errors, while for specifications at the
andi-day-level, we cluster standard errors at the mandi-level.

Phase 1 of the lockdown reduced nationwide food arrivals by 69%16

column 1, Table 1), with a nearly identical estimated drop when
e also include data from 2018 in the ‘‘control group’’ (column 2).
olumes subsequently recovered – the Phase 2 fall is only 20% (column
), while each of the coefficients for Phase 3 to 5 are actually positive,
hough not significant, in both columns 1 and 2 (with the exception
f Phase 5 in column 2, significant at the 10% level). These regression
esults show that aggregate volumes fully returned to normal levels by
arly-May, and even somewhat exceeded normal levels by June.

The large volume reduction during Phase 1 could reflect two mar-
ins: mandis closing completely (the extensive margin) or mandis
emaining open but at lower capacity (the intensive margin). We find
vidence for both margins. The number of functional mandis fell by
9 to 42% during Phase 1 (columns 3 and 4, Table 1, and visualized
n Fig. 2), showing that the extensive margin drove some of the vol-
me reduction.17 These extensive margin effects are potentially more
amaging than intensive margin effects – extreme food insecurity is
resumably less likely if all markets remaining functioning, though at

15 With only data for 2020 we could estimate a pre-post (or before–after)
pecification, in which we compare volumes before and after March 24,
020. The key drawback with such a specification is that changes after
arch might reflect seasonality in volumes, rather than the causal effect of

he lockdown and associated COVID-19 shocks. By including the 2019 data,
e ‘‘difference out’’ this seasonality (formally by including calendar date

ixed effects), making our estimates difference-in-difference estimates. These
stimates essentially ask how much bigger the volume drop was after March
020 when compared with that after March 2019, and attribute this difference
o the effects of the pandemic. Put another way, we implicitly estimate the
ounterfactual volumes (in the absence of the pandemic) after March 24, 2020
o be those implied by applying the seasonality in 2019 to the levels of volumes
t the start of 2020.
16 The Phase 𝑡 volume fall in % is estimated as 100 ×

(

1 − 𝑒𝛽𝑡
)

.
17 One important assumption we make here is that effects on the number
f functioning mandis are given by our estimated effects on the number
f reporting mandis. If the reporting itself (holding constant whether the
andi was functioning) was negatively impacted by the lockdown, we would

verestimate the fall in functionality that followed the lockdown. We think
ur assumption is reasonable given two pieces of evidence that non-reporting
andis are likely non-functioning. First, other experts (e.g. Rawal and Verma
020) and Government of India officials themselves report the number of
unctional mandis as the number of mandis reporting data to Agmarknet.
econd, the Ministry of Agriculture states that mandis that are part of the
gmarknet scheme are fully computerized and the dataflow is nearly auto-
atic, suggesting that reporting is straightforward conditional on having data

o report.
4

Fig. 2. The number of functioning mandis plummeted and then recovered. Notes: The
𝑦-axis variable is a seven-day moving average of the number of mandis that reported
any data to Agmarknet on each date, among the 1804 mandis that reported arrivals in
tonnes to Agmarknet at least once in March 2020. The data covers January 1 to June
30, 2018 to 2020. Given that the variable is a seven-day moving average, the first data
point shown is January 7 (the average number of reporting mandis for January 1 to
7).
Source: agmarknet.gov.in.

lower capacity, than if markets in some locations shutdown completely,
with other locations functioning at normal levels.

To isolate intensive margin effects, we aggregate food arrivals to
the mandi-day-level, and re-run the difference-in-difference specifica-
tion with mandi fixed effects. Given that the outcome is the natural
logarithm of arrivals, any non-functional mandi-days are dropped from
the regression. As a result, the coefficients can be interpreted as the
effects on mandi-level volumes conditional on the mandi remaining
open. When considering only the intensive margin, volumes fell by 44%
during Phase 1 (columns 5 and 6, Table 1), with a similar pattern of
recovery, including significantly higher volumes than normal during
Phases 3 to 5.

While we see effects at both the extensive and intensive margins,
we might expect effects to vary spatially. Given that high population
density facilitates the transmission of COVID-19, one hypothesis would
be that the volume shock is more severe at mandis in more urban
districts. In fact, the phase-wise patterns of shock and recovery are
similar in urban and rural districts (Fig. 3). If anything, we estimate a
slightly larger Phase 1 volume shock in the more rural districts, though
we cannot reject that the Phase 1 effects are equivalent in rural and
urban districts at conventional levels (Table A3). These results suggest
that local COVID-19 risk, which is higher in urban areas, may not be
a key driver behind supply disruptions – a theme we return to more
systematically in Section 3.3.

Drivers of the Volume Shock. To understand what drove the initial
volume shock we draw on a set of qualitative interviews with wholesale
traders in Delhi, and information from publicly available sources.

A sudden fall in the volume of arrivals could be due to a fall in
demand or issues pertaining to the supply chain. Supply-side issues
appear to have been important contributors. First, uncertainty about
the rules on inter-state travel made it cumbersome to transport pro-
duce across state borders. Border closures, extra layers of inspection
and documentation requirements, and a lack of clarity on the rules
regarding the transport of agricultural produce created uncertainty for
truck drivers (Hussain, 2020). Inability to find paid work to transport
produce added to these frictions. Secondly, at the market level, a sharp
fall in the supply of labor, driven by the exodus of migrant laborers
from urban areas to their native places, reduced the pace at which
trucks could be loaded and unloaded. A shortage of ancillary workers,

http://agmarknet.gov.in


Food Policy 105 (2021) 102162M. Lowe et al.

a

Table 1
The lockdown’s impact on food arrivals.

ln(Food Arrivals) ln(Functioning Mandis) ln(Food Arrivals)

(1) (2) (3) (4) (5) (6)

Phase 1 (Mar 25–Apr 14) −1.17*** −1.18*** −0.54*** −0.51*** −0.58*** −0.59***
(0.30) (0.24) (0.14) (0.12) (0.04) (0.04)

Phase 2 (Apr 15–May 3) −0.22 −0.20 −0.07 −0.02 −0.17*** −0.16***
(0.26) (0.23) (0.14) (0.13) (0.04) (0.04)

Phase 3 (May 4–May 17) 0.17 0.16 −0.12 −0.13 0.18*** 0.21***
(0.32) (0.28) (0.19) (0.17) (0.04) (0.04)

Phase 4 (May 18–May 31) 0.30 0.29 −0.10 −0.11 0.27*** 0.31***
(0.33) (0.28) (0.19) (0.16) (0.04) (0.04)

Phase 5 (Jun 1–Jun 30) 0.40 0.40* 0.06 0.08 0.21*** 0.31***
(0.26) (0.22) (0.14) (0.12) (0.04) (0.03)

Observations 240 360 240 360 260 181 388 382
Sample Period 2019–20 2018–20 2019–20 2018–20 2019–20 2018–20
Year Fixed Effects Yes Yes Yes Yes Yes Yes
Date Fixed Effects Yes Yes Yes Yes Yes Yes
Mandi Fixed Effects No No No No Yes Yes

Notes: The unit of observation is a day in columns 1 to 4, and a mandi-day in columns 5 and 6. The regressions include data from March 1
to June 30 for each year (either 2019–2020 or 2018–2020), with the exception of national holidays (Republic Day and Holi). Robust standard
errors in columns 1 to 4, standard errors clustered at mandi-level in columns 5 and 6. The outcome for columns 1 and 2 is the natural logarithm
of the tonnes of nationwide food arrivals to mandis that reported at least once in March 2020. The outcome for columns 3 and 4 is the natural
logarithm of the number of functional (i.e. reporting) mandis among the sample relevant for columns 1 and 2. The outcome for columns 5 and
6 is same as that for columns 1 and 2, though measured at the mandi-day-level. *** 𝑝 < 0.01, ** 𝑝 < 0.05, * 𝑝 < 0.1.
Fig. 3. Food arrivals to urban vs. rural India. Notes: The 𝑦-axis variable is a seven-day moving average of aggregate tonnes of food arrivals to the 1804 mandis that reported
arrivals in tonnes to Agmarknet at least once in March 2020. Rural India includes any mandis residing in a district with an above-median share of rural households in the 2011
Census, with Urban India including all other mandis. The data covers January 1 to June 30, 2018 to 2020. Given that the variable is a seven-day moving average, the first data
point shown is January 7 (the average arrivals for January 1 to 7).
Source: agmarknet.gov.in.
e.g. book keepers, also impacted the daily functioning of the markets
(Mishra and Pillai, 2020).

Constraints faced at the last mile of the supply chain by retail
vendors also played a part in reducing transaction volumes. Rules on
social distancing made many retail markets non-functional in urban
areas, and retail vendors had to resort to alternative business models
– e.g. selling in multiple neighborhoods in the same day – which
increased effort costs and reduced volumes. Many other retail vendors
decided not to operate at all.

The recovery of wholesale volumes since mid-April 2020 is signif-
icant given these supply-side vulnerabilities. After the initial hiatus,
inter-state movement of agricultural goods recovered as policies to ease
restrictions on the cross-state movement of agricultural goods were put
in place.18 The central government issued directives to free the inter-
state movement of vehicles carrying essential commodities and worked
in coordination with State Agricultural Marketing Boards to ensure

18 See https://pib.gov.in/PressReleseDetail.aspx?PMO=3&PRID=1608009
ccessed on July 20, 2020.
5

the smooth movement of agricultural goods across state borders.19

In addition, wholesale markets adapted by resuming operations with
physical distancing and other measures to limit the spread of the virus.
For example, in Asia’s largest wholesale fruit and vegetable market in
Delhi, Azadpur mandi, traders with odd- and even-numbered sheds ran
business on alternate days, vegetables and fruits were sold at separate
times, and limits on the number of trucks that could be operated by
each individual trader were introduced (Press Trust of India, 2020).

3.2. Wholesale prices increased and then returned to a downward trend

A return to pre-lockdown food volumes may still be consistent with
a threat to food security if prices are higher. To explore this, we use
an event study approach to compare the evolution of wholesale prices
in 2020 with 2018 and 2019. This year-by-year event study approach
differs from the analysis in Table 1 in that we do not explicitly esti-
mate a difference-in-difference effect of the pandemic. We change the

19 See https://pib.gov.in/PressReleseDetailm.aspx?PRID=1616771 accessed
on July 20, 2020.

http://agmarknet.gov.in
https://pib.gov.in/PressReleseDetail.aspx?PMO=3&PRID=1608009
https://pib.gov.in/PressReleseDetailm.aspx?PRID=1616771
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approach when considering prices because the strong autocorrelation in
prices makes the parallel trends assumption unreasonable. As a result,
our analysis of prices is more descriptive in nature than our analysis of
volumes.

We estimate the following specification separately for each of the
three years:

𝑙𝑛
(

Modal Price𝑠𝑚𝑓𝑑
)

= 𝛼𝑠𝑚𝑓 +
−1
∑

𝑡=−11
𝛽pre
𝑡 Week𝑡𝑑 +

14
∑

𝑡=1
𝛽post
𝑡 Week𝑡𝑑 + 𝜖𝑠𝑚𝑓𝑑

(2)

where 𝑙𝑛
(

Modal Price𝑠𝑚𝑓𝑑
)

is the natural logarithm of the modal price
of food variety 𝑓 in mandi 𝑚 in state 𝑠 on calendar date 𝑑. 𝛼𝑠𝑚𝑓
are state-by-mandi-by-food variety fixed effects. Week𝑡𝑑 is a dummy
variable equal to one if date 𝑑 belongs to the 𝑡th week after March
4 – for example, Week1𝑑 is equal to one for March 25 to 31, while the
irst and last weeks are January 1 to 7 (Week−11𝑑 ) and June 24 to 30

(Week14𝑑 ), respectively. The omitted category is Week0𝑑 , covering March
18 to 24. From this specification we estimate pre-lockdown trends in
prices (𝛽pre

𝑡 ) and post-lockdown trends (𝛽post
𝑡 ), holding constant the

food variety and location, and implicitly conditioning on availability
of the variety.20 We can then compare these estimated trends with the
trends estimated for 2018 and 2019.

Wholesale prices did not change noticeably around March 25 in
2018 or 2019, while in 2020 prices jumped sharply by 8% (Fig. 4).
The increase suggests that the sudden fall in supply was not matched
by a commensurate fall in demand. This price spike was however short-
lived – four weeks after the lockdown began, price levels were similar
to those immediately prior to the lockdown. Following this, wholesale
prices returned to a downward trend, such that prices were 5 to 10%
lower than pre-lockdown levels toward the end of Phase 5.21 In short,
prices were affected similarly to volumes (Fig. 1) – an initial shock
during Phase 1 followed by a return to normality during the subsequent
lockdown phases.22

While our analysis considers wholesale prices, evidence for urban
areas from Narayanan and Saha (2021) suggests that our findings may
also hold for retail prices – they find that the retail price markup over
wholesale prices remained fairly constant during the lockdown period.

3.3. State-level food supply disruptions versus coronavirus spread

An important question is whether the supply chain disruption was
driven more by state-level lockdown policies or by local behavioral
responses. If the latter, continued virus transmission would disrupt
supply chains even in the absence of state-mandated lockdowns. We
approach this question in two main steps. First, we correlate the evolu-
tion of food arrivals at the state-level with the state-level coronavirus

20 One caveat is that with non-functional markets (Figure A1), sometimes
ood was not available at all during the lockdown, making the prices of some
ood varieties effectively infinite. This means that our analysis here understates
he effective lockdown-induced increase in wholesale prices, given that we
tudy only the effects on prices conditional on availability.
21 One possible explanation for the lower price level by Phase 5, other than

hat of a return to trend, could be that while supply rebounded, demand
emained low, placing downward pressure on prices.
22 The pattern of rising wholesale prices at the onset of the lockdown holds

or most of the major commodity groups (Figure A6), with the exception
f spices, which did not see a lockdown-induced price increase at all. One
ossible explanation is that the non-perishability and relative non-necessity of
pices meant that demand was more elastic than it was for other commodity
roups and therefore a supply disruption did not lead to major changes in
rices. However, we do not find strong evidence for heterogeneity in the
ockdown-induced price increase by perishability overall (Figure A7). While
he 2020 wholesale price trends for (manually-classified) perishables are more
olatile than those for non-perishables, both product categories see a similar
hort-term spike in prices after the lockdown.
6

Fig. 4. After an initial increase in wholesale prices, prices returned to trend. Notes:
The figure plots the percentage change in wholesale prices implied by the year-by-year
estimates from Eq. (2). Specifically, the pre-lockdown y-axis variable is 100×

(

𝑒 ̂𝛽pre
𝑡 − 1

)

for 𝑡 ∈ {−11,−10,… ,−2,−1}, while the post-lockdown variable is 100 ×
(

𝑒
̂𝛽post
𝑡 − 1

)

for
𝑡 ∈ {1, 2,… , 13, 14}. The sample comprises only those mandis that reported data at least
once in March 2020.

caseload. We will show that the initial disruption was highly positively
correlated with coronavirus at the state-level. Second, we use within-
state variation to unpack the correlation, and find the correlation
between district-level COVID-19 incidence and food supply disruption
is neither economically nor statistically significant, indicating that the
relationship is not driven by local responses to COVID-19 exposure.
Finally, utilizing the decline in state-level mobility as a proxy for state-
level policy, we show a strong positive relationship between decline in
mobility and the food supply disruption. We conclude that state-level
policy responses are more likely responsible for the food supply shock
rather than voluntary individual responses.

It is important to note that the confirmed COVID-19 case counts
differ from the true COVID-19 case counts due to underreporting and
insufficient testing, and that the extent of undercounting may differ by
state. Nevertheless, confirmed COVID-19 case counts represent the best
information about the severity of the pandemic available to policymak-
ers and market participants. Thus the analysis to follow can be viewed
as investigating the relationship between (potentially mistaken) views
about the severity of the pandemic and the health of the food supply
chain.23

To analyze the relationship between food supply and confirmed
COVID-19 cases at the state level, we first estimate the size of the
volume shock for each state, separately for the first phase of the
lockdown versus the subsequent four phases of the lockdown. This way
we broadly split the post-lockdown period into the ‘‘shock’’ phase and
the ‘‘recovery’’ phase (as is clear in Fig. 1 and Table 1). We use the
following specification for each state 𝑠:

𝑙𝑛 (Volume)𝑠𝑦𝑑 = 𝛼𝑠𝑦 + 𝛼𝑠𝑑 + 𝛾𝑠Phase1𝑦𝑑 + 𝜃𝑠Phase2−5𝑦𝑑 + 𝜖𝑠𝑦𝑑 (3)

which differs from Eq. (1) in two ways. First, the 𝑠 super-scripts indicate
that this regression is run state-by-state for state-specific coefficients.
Second, we replace the dummy variables for each of the Phases 2 to
5 with Phase2−5𝑦𝑑 , a dummy variable equal to one for the entire post-
Phase 1 period (April 15 to June 30). Importantly, the outcome is now
the natural logarithm of state-level food arrivals on a particular day,
rather than that of nationwide food arrivals. We again use data only
from March 1 to June 30, in 2019 and 2020, and estimate effects for 17
states with consistent data – those with at least 10 mandis on average

23 For a discussion of related issues, see Abay et al. (2021).
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Fig. 5. States with more coronavirus cases had bigger supply chain disruptions during
phase 1. Notes: The 𝑦-axis is the estimated Phase 1 volume fall for each of 17 states,
where the estimate is 100×

(

1 − 𝑒𝛾𝑠
)

using estimated coefficients from Eq. (3). The 𝑥-axis
s the number of confirmed cases of coronavirus by the end of Phase 1 (April 14), from
pi.covid19india.org. 𝜌 is Pearson’s correlation coefficient between the estimated Phase
volume fall and the natural logarithm of the number of confirmed cases by April 14,

020.

eporting daily data during each of the months from March to June in
019, and from January to March in 2020. These 17 states cover 885
illion people, or 73% of India’s population as of the 2011 census.24

The Phase 1 volume fall at the state-level (100 ×
(

1 − 𝑒𝛾𝑠
)

) is
trongly positively correlated with the log number of confirmed cases
f coronavirus as of the end of Phase 1 (𝜌 = 0.72, 𝑝 = 0.001, Fig. 5). In
act, the log number of confirmed cases of coronavirus alone explains
ver half of the variation in the state-level volume shocks (𝑅2 = 52%).
hile the lockdown was national, the impact on essential food supply
as more severe in regions which had a higher incidence of the virus.

The picture that emerges in the period starting in Phase 2 is,
owever, quite different. The state-level volume fall during Phases 2 to
is uncorrelated with the coronavirus caseload as of the end of Phase
(𝜌 = 0.07, 𝑝 = 0.8, Fig. 6). This shows that the nationwide supply

ecovery visualized in Fig. 1 does not mask heterogeneity across states
ith more versus less coronavirus – in essence, volumes recovered

egardless of the spread of coronavirus.

.4. Is the supply disruption-COVID-19 relationship due to state-level poli-
ies or local responses?

There are two main factors that would lead to a correlation between
he initial food supply disruption and the state-level incidence of coron-
virus. First, states with more coronavirus introduced stricter lockdown
olicies with greater efforts at enforcement. These policies could have
isrupted the supply chain.25 Second, even holding state-level policies
onstant, people could voluntarily change their behavior in response
o a high local incidence of coronavirus. For example, rather than

24 These 17 states are Andhra Pradesh, Chattisgarh, Gujarat, Haryana,
imachal Pradesh, Karnataka, Kerala, Madhya Pradesh, Odisha, Punjab, Ra-

asthan, Tamil Nadu, Telangana, Tripura, Uttar Pradesh, Uttrakhand, and West
engal. The seven states (or union territories) that are dropped relative to
ur previous 24-state analyzes are: Goa, Jammu and Kashmir, Jharkhand,
eghalaya, Nagaland, NCT of Delhi, and Pondicherry (Table A1).
25 While we do not directly observe state-level lockdowns in our data, we
tilize declines in state-level mobility, measured via Google mobility data, to
roxy for state-level lockdowns. Figure A8 demonstrates a strong relationship
etween state-level COVID-19 incidence and mobility reductions as of April
7

4 (Phase 1 of the national lockdown).
Fig. 6. Volume shocks were not correlated with coronavirus cases after phase 1. Notes:
The 𝑦-axis is the estimated Phase 2–5 volume fall for each of 17 states, where the
estimate is 100 ×

(

1 − 𝑒𝜃𝑠
)

using estimated coefficients from Eq. (3). The 𝑥-axis is the
number of confirmed cases of coronavirus by the end of Phase 5 (June 30), from
api.covid19india.org. 𝜌 is Pearson’s correlation coefficient between the estimated Phase
2–5 volume fall and the natural logarithm of the number of confirmed cases by June
30, 2020.

being deterred by state-level policies, people might voluntarily restrict
their labor supply out of fear of contracting the disease. Distinguishing
between the two factors matters – if voluntary individual responses
are most important, the lifting of lockdown policies would not reliably
restore the functioning of food supply chains.

We look at this question by examining within-state variation in food
supply and COVID-19 intensity. If state-level policy variation alone is
responsible for the correlation between COVID-19 intensity and the
disruption of the food supply, then the relationship should disappear
in a within-state analysis. However, if the disruption is driven by
voluntary behavioral responses, then the correlation should persist even
using within-state variation. In what follows we demonstrate that there
is no economically or statistically significant correlation between the
food supply shock and COVID-19 intensity at the within-state level and
therefore the food supply shocks are most likely due to state-level policy
variation.26 At the close of this section we provide a more direct form
of evidence that state-level policy is responsible for the food supply
shock. Namely, we demonstrate that declines in mobility, measured
using Google mobility data, are strongly correlated with food supply
shocks at the state level.

We begin with our analysis of district-level data to estimate the
evolution of food supply in districts with more versus less coron-
avirus exposure. Earlier, we used a difference-in-difference specifica-
tion (Eq. (1)) to estimate the effect of the lockdown as the additional
fall in volumes post-March 24 in 2020 relative to 2019. Now we
test whether this difference-in-difference effect is larger in districts
with more exposure to COVID-19. This amounts to a triple-difference
approach, in which the triple interaction term is between (i) post-
March 24, (ii) the year 2020, and (iii) confirmed COVID-19 cases at
the district-level. More formally, we estimate:

𝑎𝑟𝑐𝑠𝑖𝑛ℎ
(

Volume𝑥𝑦𝑑
)

= 𝛼𝑥𝑑 + 𝛼𝑥𝑦 + 𝛼𝑑𝑦 (4)

+ 𝜙1

(

𝑎𝑟𝑐𝑠𝑖𝑛ℎ
(

COVID-19 Cases𝑥
)

× Phase1𝑦𝑑
)

26 We note that policy can vary at the district-level as well. Nevertheless, the
fact that we find no evidence of a relationship between district-level COVID-19
incidence and the food supply shock indicates that neither district-level policy
nor voluntary individual withdrawal of labor supply are responsible for the
shocks.

http://api.covid19india.org
http://api.covid19india.org
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(

𝑎𝑟𝑐𝑠𝑖𝑛ℎ
(

COVID-19 Cases𝑥
)

× Phase2−5𝑦𝑑

)

+ 𝜖𝑥𝑦𝑑

where Volume𝑥𝑦𝑑 is the total quantity of food arrivals in tonnes to
district 𝑥 during year 𝑦 on calendar date 𝑑. Here we take the inverse
hyperbolic sine, rather than the natural logarithm, of Volume𝑥𝑦𝑑 , given
that 18% of our analysis sample observations at the district-day-level
are zero-valued. As is standard with triple-difference specifications, we
include all possible two-way interactions: 𝛼𝑥𝑑 are district-by-calendar
date fixed effects, 𝛼𝑥𝑦 are district-by-year fixed effects, and 𝛼𝑑𝑦 are
date fixed effects.27 These two-way interactions fully absorb the overall
difference-in-difference effect of the lockdown, meaning our focus in
this specification is only on estimating the differential effect of the
lockdown in high- versus low-exposure districts.

COVID-19 Cases𝑥 is the number of confirmed coronavirus cases in
district 𝑥 by the end of Phase 1 (April 14, 2020). Given that 166 of our
399 analysis sample districts had zero confirmed cases of COVID-19 by
April 14, we again take the inverse hyperbolic sine of this variable.
Phase1𝑦𝑑 and Phase2−5𝑦𝑑 are as defined earlier. We cluster standard errors
t the district-level.
�̂�1 is our estimate of the additional effect of Phase 1 of the lock-

down on volumes in COVID-19 affected districts relative to unaffected
districts, while �̂�2 is the estimate for Phases 2 to 5. Given the inverse
hyperbolic sine transformations on the left- and right-hand-side, these
coefficients can be interpreted as elasticities for large enough values of
Volume and COVID-19 Cases (Bellemare and Wichman, 2020).

We estimate three variants of this specification. First, we replace
𝑎𝑟𝑐𝑠𝑖𝑛ℎ

(

COVID-19 Cases𝑥
)

with 𝑎𝑟𝑐𝑠𝑖𝑛ℎ
(

COVID-19 Cases𝑠
)

where 𝑠
denotes the state that district 𝑑 belongs to. This initial specification
ims to replicate the strong positive correlation in Fig. 5 – showing
hat districts that belong to states with more COVID-19 suffered a
arger supply shock during Phase 1. In the second variant we estimate
q. (4) itself. In doing so, we test whether districts with more COVID-19
hemselves suffered a larger supply shock. In the third variant, we add
tate-date fixed effects (𝛼𝑠𝑑𝑦), fully absorbing any time-varying state-
evel policy (or even non-policy) variation. This specification allows
s to estimate the different effects of the pandemic on affected versus
naffected districts while only making comparisons within the same
tate.28

Before turning to the three specifications described, we first repli-
ate the negative effects of the lockdown on supply (e.g. as in column 1,
able 1) using the district-day-level data.29 Consistent with our earlier
esults, food arrivals to districts dropped by 86% during Phase 1 of the
ockdown (column 1, Table 2, compared with a 69% drop in column 1,
able 1), and recovered fully during Phases 2 to 5.

The Phase 1 disruption was larger in COVID-19-affected states (𝑝 <
.01, column 2, Table 2), consistent with the strong positive correlation
etween caseload and state-level supply shocks in Fig. 5. Specifically,
he point estimates imply that a doubling of state-level cases by April
4 is associated with a negative supply shock that is 33% larger.

Strikingly, the correlation between COVID-19 exposure and supply
isruption disappears when we instead define exposure at the district-
evel (column 3, Table 2), and remains small and not statistically
ignificant when we exploit only within-state variation (column 4).
hese results suggest that the strong relationship between supply dis-
uptions and COVID-19 exposure is not driven by local reactions –
or example, the withdrawal of labor due to local fears of catching
oronavirus. Instead, the pattern of results is most consistent with

27 Equivalent to calendar date-by-year fixed effects.
28 In support of the key assumption for a triple-difference specification, pre-

rends are parallel for each of these three variants of our core specification
Table A5).
29 Note that our district-level estimates need not coincide with our
8

ndia-level estimates given that our district-level regressions are unweighted.
supply disruptions being driven by state-led reactions, with states with
more COVID-19 reacting more aggressively.30

We note that, much as in the case of state-level confirmed COVID-
19 cases, district-level COVID-19 cases are very likely to be measured
with error, and this error may vary systematically across districts. For
instance, some districts may not have testing facilities, and people may
cross district boundaries to get tested. As in the case of state-level
confirmed COVID-19 cases, if people utilize district-level confirmed
COVID-19 case statistics to inform their decisions, then our analysis
demonstrates that voluntary responses to perceived COVID-19 intensity
are not a significant contributor to the food supply shock. However,
people may have also used other sources of information about the
pandemic’s intensity, which were only imperfectly correlated with con-
firmed cases. In this event the lack of district-level correlation between
confirmed cases and the food supply shock may in part be due to our
imprecise measurement of perceived COVID-19 intensity at the district
level.

To provide more direct evidence that state-level policy is a primary
driver of the food supply shock, we turn to Google mobility data. In
the absence of a comprehensive list of state-level policy responses to
the pandemic, declines in mobility may be a good proxy for policy
responses. Namely, states with more stringent lockdowns should see
a larger decline in mobility. In Figure A9 we replicate the analysis of
Fig. 5, but rather than confirmed COVID-19 cases, the 𝑥-axis measures
the decline in state-level mobility during Phase 1 of the lockdown.
Indeed, there is a strong positive correlation (𝜌 = 0.54, 𝑝 = 0.03)
between declines in state-level mobility and the food supply shock.
Table A4 confirms this conclusion in a regression framework. Every 1%
decrease in mobility at the state-level corresponds to a 2.6% decrease
in food volumes (𝑝 < 0.01), though this relationship disappears once
controlling for COVID-19 intensity. Echoing Fig. 6, the unconditional
relationship also disappears in Phases 2–5 (𝜌 = 0.15, 𝑝 = 0.56, Figure
A10).

4. Conclusion

This paper documents how India’s food supply chain responded
following the national lockdown. Aggregate volumes dropped by 69%
during the first few weeks of the lockdown, but subsequently fully
recovered. Similarly, wholesale prices rose by 8% initially, but then
returned to a downward trend. Exploiting regional variation, we also
show that the initial volume shock was closely correlated with local
exposure to COVID-19, and we demonstrate that this was more likely
driven by state-level policy variation than by voluntary responses of
those within the food supply chain. These facts provide some com-
fort with regard to the concerns of food security in large emerging
economies like India’s in the wake of the pandemic.

Policymakers around the world, and especially in the developing
world, face an important tradeoff in reacting to a pandemic. The more
stringent their initial lockdown the less the pandemic can spread, but
also the worse is the potential damage to the economy’s most critical
functions. That India’s food supply chain began recovering immediately
following the strictest phase of the lockdown was not a forgone conclu-
sion. Shutting the country down for three weeks – and then beginning a
staggered reopening – could have introduced a coordination breakdown
along the many components of the supply chain, hampering its recovery
even far after the lockdown was lifted. Though it is only a single case
study, the fact that India’s food supply chain recovered so quickly
and completely suggests that strict lockdown measures at the onset of
pandemics need not cause long-term economic damage.

30 Phase 2 to 5 district-level supply disruptions are also not mediated by
COVID-19 exposure (columns 3 and 4, Table 2). These Phase 2 to 5 results
are similar if we instead define COVID-19 exposure as of the end of Phase 5,
i.e. June 30, paralleling Fig. 6 (Table A6).
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Table 2
District-level supply disruptions by COVID-19 exposure.

arcsinh(Food Arrivals in Tonnes to District)

(1) (2) (3) (4)

Phase 1 (Mar 25–Apr 14) −1.963***
(0.100)

Phases 2–5 (Apr 15–Jun 30) 0.148**
(0.063)

arcsinh(COVID-19 Cases in State) × Phase 1 −0.404***
(0.046)

arcsinh(COVID-19 Cases in State) × Phases 2–5 0.055**
(0.025)

arcsinh(COVID-19 Cases in District) × Phase 1 −0.004 0.017
(0.061) (0.047)

arcsinh(COVID-19 Cases in District) × Phases 2–5 0.044 0.043
(0.042) (0.046)

Observations 94 164 94 164 94 164 93 928
Number of Districts 399 399 399 398
District-Calendar Date Fixed Effects Yes Yes Yes Yes
District-Year Fixed Effects Yes Yes Yes Yes
Date Fixed Effects No Yes Yes No
State-Date Fixed Effects No No No Yes

Notes: The unit of observation is a district-day. The regressions include data from March 1 to June 30 for 2019–2020, with the exception
of national holidays (Republic Day and Holi). Standard errors are clustered at the district-level. The outcome is the inverse hyperbolic sine
(arcsinh) of the number of tonnes of food arrivals to mandis in the districts that reported at least once in March 2020. COVID-19 Cases in
State/District are as of April 14, 2020. *** 𝑝 < 0.01, ** 𝑝 < 0.05, * 𝑝 < 0.1.
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